Polynomials

Lesson 1

Math

Unit 3

11th Grade

Lesson 1 of 14

Objective


Classify polynomials through identification of degree and leading coefficient. Graph a polynomial function from a table of values; prove degree using successive differences.

Common Core Standards


Core Standards

  • A.APR.A.1 — Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
  • F.IF.C.7.C — Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.
  • F.IF.C.9 — Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

Foundational Standards

  • F.BF.B.3
  • F.IF.B.4
  • F.IF.C.7.A

Criteria for Success


  1. Describe that polynomials are classified by the highest degree (exponent) of the function. 
  2. Describe that the degree of the polynomial indicates shape of the function, and the leading coefficient further indicates the direction of the graph of the function at each extreme. 
  3. Describe how to identify the degree and leading coefficient of a polynomial from a table of values using successive differences. 
  4. Explain that parent functions are the basic version of a polynomial function and that the function, like quadratics, can be transformed with translations, reflections, and dilations. 
  5. Graph multiple functions in a graphing calculator in [Y=] and [GRAPH]. "Turn on" and "turn off" functions in [Y=].
  6. Use [STAT] to enter data into L1 and graph functions.
Fishtank Plus

Unlock features to optimize your prep time, plan engaging lessons, and monitor student progress.

Anchor Problems

25-30 minutes


Problem 1

Graph each of the functions in your graphing calculator: 

$${h(x)=x^2}$$

$${j(x)=x^3}$$

$${k(x)=x^4}$$

$${m(x)=x^5}$$

You’ll notice your calculator will look like this:

Guiding Questions

Create a free account or sign in to access the Guiding Questions for this Anchor Problem.

Problem 2

What do these functions have in common? How are they different?

$${f(x)=-\frac{1}{2}(x-2)^3}$$ $${g(x)=\frac{1}{2}(x-2)^3}$$

 

Guiding Questions

Create a free account or sign in to access the Guiding Questions for this Anchor Problem.

Problem 3

What is the degree of each of the functions shown in tables? Use a graph of the coordinate points to approximate the shape.

Guiding Questions

Create a free account or sign in to access the Guiding Questions for this Anchor Problem.

Target Task

5-10 minutes


Given the table of values below: 

  • Graph the coordinate points on your graphing calculator.
  • Use successive differences to identify the degree and leading coefficient of the polynomial. 
  • Describe the features of the graph that are indicative of the degree of the polynomial.
$$x$$ $$y$$
-7 -245
-4 -74
-1 -11
2 -2
5 7
8 70
11 241

 

 

Additional Practice


The following resources include problems and activities aligned to the objective of the lesson that can be used for additional practice or to create your own problem set.

  • Include problems using Anchor Problems #1 and #2 to make a table of values and show the successive differences to illustrate the degree.
  • Include problems where students are given an equation and they are asked to graph the function just by choosing points to plug in and approximating the shape. Look for students who are choosing a few points and then filling in others to get more information about the shape.
  • Include problems where students are given graphs and asked to identify a possible degree and describe the function. This Desmos link has a good start for ideas.

Next

Identify features of polynomial functions including end behavior, intervals where the function is positive or negative, and domain and range of function.

Lesson 2
icon/arrow/right/large

Lesson Map

A7CB09C2-D12F-4F55-80DB-37298FF0A765

Topic A: Polynomial Features and Graphs

Topic B: Operations with Polynomials

Topic C: Polynomial Extensions

Request a Demo

See all of the features of Fishtank in action and begin the conversation about adoption.

Learn more about Fishtank Learning School Adoption.

Contact Information

School Information

What courses are you interested in?

ELA

Math

Are you interested in onboarding professional learning for your teachers and instructional leaders?

Yes

No

Any other information you would like to provide about your school?

We Handle Materials So You Can Focus on Students

We Handle Materials So You Can Focus on Students

We've got you covered with rigorous, relevant, and adaptable math lesson plans for free